

INTRODUCTION:

- US Army School of Aviation Medicine (USASAM) has conducted altitude physiology training for military air crew since the early 1970s (Fig. 1)
 - On average, USASAM completes 50-60 chamber flights per year, with up to 16 students per flight
 - Flights up to 25,000ft allow students to experience the effects of high altitude and hypoxia
- There are inherent physiologic risks with this training, including Decompression Sickness (DCS)
- To date there is no comprehensive medical model to determine with certainty whether an individual will develop an adverse event during high altitude exposure (Conkin, 2013)
- This pilot study provides summary observational data and • Despite standardization of training and high USASAM training descriptive epidemiology of hypobaric chamber training-related throughput, an extensive review of historical data for adverse adverse events events has not been conducted
- This retrospective epidemiologic study sought to stimulate further inquiry into the safety of chamber flights in aviation training

METHODS:

- Historical training records were retrieved through an IRB exemption for FY 2014-2016
- De-identified data, maintained at USASAM, were reviewed for:
- Incidence of evolved gas dysbarism (DCS Types 1 or 2)
 - Adverse physiologic event (Phys)
 - Early discontinuation (D/C) of flight profile prior to reaching 25,000ft

RESULTS:

- 2395 student training records were reviewed
 - 2134 males, 259 females, 2 undocumented gender

 - Ages: 18 to 70 years (military and civilian aircrew) Three flight profiles: IV (Fig. 2), IV + RD (rapid decompression), V; 1208, 768, 419 students respectively
- Of all students trained, records indicate:
 - Zero DCS events
 - 60 total events (2.51%): 48 males, 12 females
 - All physiologic events were minor and most were identified as trapped gas dysbarism of the ears, teeth, or sinuses
 - Eight of the 51 Phys were female and four of the nine D/C profiles were female
 - Of the 2134 males, 2.01% and 0.23% experienced Stepanek J, Webb JT. Physiology of decompressive stress. In: Phys and D/C, respectively; of the 259 females, Davis JR, Johnson R, Stepanek J, Fogarty JA, editors. incidence of these events were 3.09% and 1.54% Fundamentals of aerospace medicine. 4th ed. Philadelphia, PA: (Fig. 3) Lippincott Williams & Wilkins; 2008.
 - By age, Phys events were highest in the largest groups: ages 24-29 years and 30-35 years (Fig. 4)

US Army Hypobaric Chamber Exposure: Descriptive Epidemiology of Adverse Events, 2014-2016 A. K. Vargo, C. A. Myatt, D. J. Preczewski, J. J. Pavelites, S. J. Gaydos

US Army School of Aviation Medicine, Fort Rucker, Alabama

Figure 1. USASAM Hypobaric Training

DISCUSSION:

- The absence of DCS events and the rare occurrence of minor physiologic insults is reassuring with regards to the safety of the USASAM altitude training program
- Limitations:
 - Non-standardized record keeping and event recording, to include non-descriptive events (e.g. "reactor")
 - Post-chamber flight follow-up typically limited to same-day
- Possible future research:
 - Statistical testing to determine the significance of age and gender differences in rates of events
 - Comparing rates of events with other services or federal agencies
 - Using this study as a basis for longitudinal studies to track age and gender differences
 - Process Improvement Project to better standardize reporting

CONCLUSION:

Preliminary data suggests the USASAM hypobaric chamber training program is low risk, most likely due to the altitude restriction of 25,000ft, education, and medical prescreening involved with chamber operations.

DISCLOSURE:

I have no financial relationships to disclose. **REFERENCES**:

- Conkin J, Gernhardt ML, Abercromby AF, Feiveson AH. Probability of hypobaric decompression sickness including extreme exposures. Aviat Space Environ Med. 2013 Jul;84(7):661-8.
- 3. Training Circular (TC) 3-04.93: Aero Medical Training for Flight Personnel.

Figure 2. Chamber Flight Profile (Type IV)

Figure 3. Incidence of Adverse Events by Gender

